

Port of Manzanillo: Climate Risks and Opportunities

IAIA Symposium: Sustainable Mega-Infrastructure and Impact Assessment

Panama City, December 3, 2015

Vladimir Stenek, IFC, World Bank Group

Ports and climate change

- Globally, about 90% of goods transported by ships
- Ports and related infrastructure are long-lived key assets, sensitive to climate
- Locations, on coasts, rivers or lakes, exposed to impacts
- Dependence on trade, shipping and inland transport which are also climatically-vulnerable
- Reputation and consequent customers' choice heavily influenced by port's reliability

Port of Manzanillo

- Considered Mexico's leading port on the Pacific coast (47% of Mexico's total TEUs)
- Important regional traffic hub, maintains active trade relationships with over 14 countries worldwide.
- Containerized cargo, bulk minerals, general cargo, agricultural bulk, petroleum
- 14 terminals under concession, managed by private investors
- Total static capacity >49,000 TEUs
- What are the implications of a changing climate to the port (financial, environmental and social performance)?

Approach

- Risk-based adaptation decision-making
 - Port objectives and success criteria
 - Evaluation of vulnerabilities and risks
 - Identification of adaptation measures
 - Appraisal of measures

- Value-chain approach
- Financial analysis of risks
- Cost-effectiveness of adaptation measures
- Approach aligns well with national guidance

Schematic of Port of Manzanillo value chain and areas evaluated in the study (Source: Report authors)

Temperature, precipitation, wind

- **Temperature:** projected increase relative to 1979-2000, RCP 8.5 is around 1°C in 2020s and 2°C by 2040s
- Precipitation: mean dry season rainfall decreasing by 2.7 mm/ year
- High rainfall extremes: significant increasing trend in some months
- Winds: predominant winds generally light except when a tropical storm or tropical cyclone is nearby
- **Cyclones:** observed pole-ward migration in tropical cyclones, 50 km per decade (1982 to 2012)
- Science does not yet provide definitive answers about future changes in tropical cyclones (frequency, intensity) but possible increase in Cat. 4 and 5 cyclones

Distribution of tropical cyclones at their maximum intensities.
(Source: Ramsay, 2014)

(Source: Sailflow, 2015)

Sea levels

- Sea level rise of 3.3 mm/year recorded (1952-82; gauge moved in 1992)
- Tidal + Seasonal + El Niño maximum contributions to sea level are +0.7 m
- Storm surge heights:
 - 1 in 250 year event: +2.53 m above mean sea level
 - 1 in 500 year event: +2.85 m above mean sea level

- 3 scenarios of mean sea level rise (SLR) + maximum tidal components + increasing storm surge:
 - Observed scenario: 3.3 mm/year constant until 2100 + 1:100 year storm surge
 - Moderate 'accelerated' scenario: IPCC low range +
 1:250 year storm surge
 - High 'accelerated' scenario: IPCC high range + 1:500 year storm surge
- SLR projections are changing: models and observations

Low, moderate and worst case sea level scenarios (mean SLR plus tidal, seasonal and ENSO fluctuations). (Source: Report authors).

Hydrology

- Rainfall drainage concentrating in the port
- High rainfall events and debris accumulation => insufficient drainage capacity and flooding
- Main port entrance, internal access road, rail connections: almost annual surface water flooding
- Expected future increase in flow of drainage water entering the port
- Likelihood of a flooding event is estimated to almost double by 2050

Port catchment area and Drain 3 that commonly overflows. (Source: CNA, 2014)

Changes in peak discharge flows. (Source: Report authors)

Prioritization of risks

Each identified risk evaluated against four key criteria:

- 1. Current vulnerability is high
- 2. Projected impacts of climate change are large
- 3. Adaptation decisions have long lead times or long-term effects
- 4. Large uncertainties scale of future risk is uncertain but could be large
- Risk rated 'high' against two or more criteria → high priority risk
- Risks where current vulnerability rated 'high' → high priority risk

Seawater flooding stopping goods handling

- Flood risk (depth >30cm) to affect some infrastructure by 2040 with 1:250 year storm surge
- Flood risk to most terminal quays an issue by 2070s, moderate sea level rise + 1:250 year storm surge
- General inundation of port patio and upland areas only for the 'worst case' SLR scenario combined with 1:500 year storm surge event*
- Physical and operational adaptation options can be considered for extreme mean SLR*:
 - Raise quay heights (in the long term)
 - Maintain natural coastal defenses provided by mangroves
 - Retrofit critical equipment and infrastructure that is vulnerable to flooding
- At the moment, financial losses and damages would typically be covered by insurance

Maximum potential sea level (mean SLR + tidal\seasonal\ENSO + storm surge) (Source: Report authors)

Areas of port at risk of flooding by 2070s, from mean SLR + 1 in 250 year storm surge (Source: Report authors)

Rain causing disruption to goods handling

Light rain

Bulk mineral/agricultural terminals

Product quality can be affected so stops (un)loading e.g. vessel hatches closed

Future: Fewer days with rain are expected

23% decrease in number of rainy days by 2040s

Heavy rain

Container terminals

Handling stopped due to reduction in visibility for crane and forklift operators

Future: More intense rain is expected

90% increase in number of heavy rain days (>20mm/day) by 2040s

API Manzanillo lost wharfage revenue due to increased intense rainfall events (undiscounted). (Source: Report authors).

- Financial impact on terminals and API Manzanillo is relatively minor
- Operational downtime for containerized cargo handling due to intense rainfall is estimated to increase from 0.1% at present to 0.2% by the 2040s
- Increased covered handling areas, review of handling procedures can be considered
- Overall drier conditions may result in less disruption for bulk mineral and agricultural terminals

Damage to port equipment and infrastructure

Surface water flooding

- Flooding damage already costly
- Future increase in maximum tropical storm intensity and greater flooding events
- Increased costs for
 - maintenance of internal roads/customs area
 - maintenance dredging
 - drain maintenance

Manzanillo post Hurricane Jova 2011. (Source: API Manzanillo).

Extreme wind speeds

- Likelihood of category 4/5 hurricanes expected to increase
- Potential exceedance of design thresholds for equipment (e.g. cranes)

Clearing mangrove channel post Hurricane Bud 2012. (Source: API Manzanillo).

Tropical depression 20E is forecast to strike Mexico as a hurricane at about 21:00 GMT on 23 October.

Reuters, Fri, 23 Oct 2015 10:00 GMT

Intense hurricane Patricia struck Mexico

at about 21:00 GMT on 23 October.

Reuters, Tue, 20 Oct 2015 03:55 GMT

Port services

Navigation and berthing

- Inner harbor is highly sheltered and inner terminals not affected by normal wind and wave activity
- One terminal is outside the harbor, less protected
- 5% downtime in 2014 due to adverse weather; downtime determined by proximity of storms
- Physical improvements: rock fill embankment, concrete drawers, operability assessment in case of changes in tropical storms

Sedimentation and terminal access

- Sedimentation reduces draft clearance close to the quays
- Presence of dredging vessel disrupts terminal operations, e.g.
 50 % more time to unload
- High costs per hour for delays; increase by 8%* by 2050
- Upgrade of drainage system traps to prevent sedimentation
- Enhance monitoring of sedimentation in the port
- More frequent drains maintenance; optimization of timing of dredging

Areas of higher sedimentation at the port (Source: Report authors)

Goods storage

- Temperature estimated to rise 1.2 2°C in dry season by the 2040s and 1.8 3°C by the 2070s
- Terminals with reefers and cold storage warehouses face increased cooling energy costs
- Significant positive relationship between mean temperature and mean monthly energy costs
- 1°C increase in temperature was associated with 5% increase in energy costs
- Increased cooling energy costs for terminal are 9% to 14% by the 2040s
- Implement technological improvements to improve efficiency (modern reefers can reduce energy costs by up to 65%)
- Isolate electrical connections to prevent loss of power and consequent extra energy for re-cooling/refreezing

Relationship between temperature and energy costs for frozen warehouse terminal. (Source: Report authors).

Inland transport

In Manzanillo and the port

- Surface water flooding of internal access road and rail connections occurs every other year when heavy rainfall (tropical storms) causes overflow of drainage system
- Can stop movement of trucks and trains for up to 3 days (depth of water and residual sediment)
- Effect of 8% increase in peak flows by 2050: additional losses

Beyond the port and the city

- 13% of main roads from Manzanillo and Guadalajara at high risk from tropical cyclones; 17% at medium risk
- >1% of rail network from Manzanillo to Mexico D.F. and Guadalajara at high risk
- Undertake closer monitoring of effect of transport network disruptions on terminals' revenues and impacts on customer satisfaction levels
- Collaborate with Municipality and State of Colima to promote development of intermodal networks

Present-day level of risk from tropical cyclones for roads (top) and rail lines (bottom) used by port clients. (Source: Report authors)

Environmental and social performance

Effects of projected impacts:

- Mangroves: SLR, drier and hotter conditions increase pressure
- **Dust:** increase in levels inside and outside the port
- **Dredging:** increase in disposal of material that may affect water quality and benthic habitat
- Energy: increase in use and GHG emissions
- Health risks to employees: increase in heat, high winds and rain
- Health risks: dengue fever becoming more prevalent in Mexico.
- Manage mangroves within the port to adapt to SLR and reduce other negative stressors
- Enhance current protocols for dust management
- Reduce GHG emissions related to energy use for reefers
- Monitor dengue cases
- Provide heat health warnings to workers, maintain contact with health authorities
- Review dust suppression and traffic amelioration measures
- Collaboration between port and city authorities, and integrated adaptation initiatives

Demand and trade

- Global GDP and revenue flows at Port of Manzanillo strongly correlated: for every 1% fall in global GDP, revenue at the port falls by 1.5%
- Port's economic output could be negatively affected by impacts of climate change on global economy
- Climate change scenarios suggest reductions of up to 4% by 2020 in the arable land suitable for seasonal corn crops in Mexico
- Monitoring; diversification of trading partner regions, diversification of business lines

Comparison between world GDP and Port of Manzanillo revenue from 1994 to 2014. (Source: Report authors)

Crop suitability index for corn: yield by 2055 compared to 1961–90 baseline. (Source: World Bank)

Port of Manzanillo Adaptation Plan

Key principles

- Address priority risks first (e.g. with high current vulnerability)
- Avoid maladaptation
- Account for environmental services
- Emphasize measures that perform well under uncertainty:
 - No regret
 - Low regret
 - 'Win-win'
 - Flexible or adaptive management options
- Align with federal, state and municipal climate change policy frameworks
- Work in partnership with other stakeholders to develop and implement adaptation measures

Types of climate change adaptation measures recommended for the Port of Manzanillo. (Source: Report authors).

Risk area for port	Adaptation objective	Adaptation measure	Туре	Cost	Effectiveness	Lead entity	
DAMAGE TO INFRASTRUCTURE, BUILDING AND EQUIPMENT	Increase resilience to floods and intense rainfall events	P1 Upgrade drainage system inside the port to increase maximum capacity and handle increased flow.		н	н	API Engineering	
		P2 Retrofit infrastructure or assets that are vulnerable to flooding, in particular critical infrastructure (e.g. insulate electrical equipment, use water resistant materials)		L	М	API Engineering	
		P3 Engage with stakeholders to plan landscape level flood management options		No regret		API Engineering, API Ecology	-
		P4 Review early flood warning systems and identify areas for improvement in light of increased risk due to climate change		No regret		API Engineering, API Ecology	
		P5 Review options for using sustainable drainage systems (SUDS) taking into account potential for changes in precipitation		н	М	API Engineering, API Ecology	
		P6 Upgrade and improve sediment traps		М	М	API Engineering	
		P7 Undertake review and adjust maintenance program to ensure that maximum capacity of existing drainage system is being achieved e.g. frequency of drain clearance		L	М	API Engineering	-
		P8 Consider catchment level landscape planning and ecosystem based adaptation options for reducing risk of drainage overflow		н	М	API Ecologia	

Cost effectiveness of adaptation measures

- High level analysis of cost effectiveness of operational and physical adaptation measures conducted
- For example surface water flooding adaptation measures:

Cost effectiveness of adaptation measures for surface water flooding. (Source: Report authors)

- P1 Upgrade drainage system inside port
- P5 Install sustainable drainage systems (SuDS)
- P6 Upgrade and improve sediment traps
- **P7** Review and adjust maintenance program for drainage system to ensure maximum capacity is achieved e.g. frequency of drain clearance
- P8 Catchment level landscape planning
- **P21** Implement traffic management measures to minimize bottlenecks during flood events

Option Category		Consequences				
Ecosystem Based Engineering	Hybrid Operational	Overall positive Overall negative	Approximately neutral			

Summary of financial impacts

Risks with significant financial impacts

- Increased surface water flooding of the port entrance/access road
- Increased sedimentation of the port basin
- Impacts of climate change on the global economy, which could affect trade through the port
- If no action is taken, potentially significant financial impacts, but
- Little risk to long term continuity of business (2050s and 2080s), assuming no disruptive events*
- Monitoring and ongoing update of analyses with latest information

Thank you for your attention

